Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37328191

RESUMO

Base-J (ß-D-glucopyranosyloxymethyluracil) is a modified DNA nucleotide that replaces 1% of thymine in kinetoplastid flagellates. The biosynthesis and maintenance of base-J depends on the base-J-binding protein 1 (JBP1) that has a thymidine hydroxylase domain and a J-DNA-binding domain (JDBD). How the thymidine hydroxylase domain synergizes with the JDBD to hydroxylate thymine in specific genomic sites, maintaining base-J during semi-conservative DNA replication, remains unclear. Here, we present a crystal structure of the JDBD including a previously disordered DNA-contacting loop and use it as starting point for molecular dynamics simulations and computational docking studies to propose recognition models for JDBD binding to J-DNA. These models guided mutagenesis experiments, providing additional data for docking, which reveals a binding mode for JDBD onto J-DNA. This model, together with the crystallographic structure of the TET2 JBP1-homologue in complex with DNA and the AlphaFold model of full-length JBP1, allowed us to hypothesize that the flexible JBP1 N-terminus contributes to DNA-binding, which we confirmed experimentally. Α high-resolution JBP1:J-DNA complex, which must involve conformational changes, would however need to be determined experimentally to further understand this unique underlying molecular mechanism that ensures replication of epigenetic information.


Assuntos
Proteínas de Transporte , Timina , Uracila/química , Uracila/metabolismo , DNA , Timidina/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo
2.
Curr Opin Struct Biol ; 38: 145-54, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27391134

RESUMO

A variety of methods to create specific constructs for protein expression, in a broad range of organisms, are available nowadays. Restriction enzyme-free, ligation-independent and recombinase-based cloning methods have enabled high-throughput protein expression for structural and functional studies. These methods are also instrumental for modification of target genes including gene truncations, site-specific mutagenesis and domain swapping. Here, we describe the most common cloning techniques that are currently at hand for recombinant protein expression studies, including a brief overview of techniques associated with co-expression experiments. We also provide an inventory of many of the available reagents for the various cloning methods, and an overview for some computational tools that can help with the design of expression constructs.


Assuntos
Clonagem Molecular/métodos , Proteínas Recombinantes/genética , Animais , Enzimas de Restrição do DNA/metabolismo , Expressão Gênica , Humanos , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...